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CALCULATION OF TEMPERATURE FIELD IN PLASMATRON ELECTRONS 
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The problems of ca l cu la t ion  of t empera ture  fields in the electrodes of 
a plasmatron ( e l ec t r i c -a re  heater)  differ from the usual hea t -conduc-  
tion problems in that  in a plasmatron there is not only convec t ive  hea t  
transfer between the e lect rode wal l  and the working med ium and be -  
tween the wal l  and the cool ing med ium,  but also an intense del ivery  of 
hea t  to the e lec t rode  in a sharply de l imi ted  region of the e lect rode 

su r face - the  arc anchor spot, 
In [1] the source-and-s ink method was used to consider several  s im-  

ilar problems in appl ica t ion  to the heat  ca l cu la t ion  of electrodes for 
welding.  In [2-5]  the tempera ture  fields from a round stationary source 

on the surface of a s emi - in f in i t e  cooled plate  and from the spot of an 

arc moving  at  high speed between two coax ia l  cyl inders  (electrodes) 
were invest igated.  

We consider a plasmatron e lec t rode  in the form of a hotlow cy l in -  

der,  one surface of which is traversed by the arc spot and the other sur- 
face is cooled.  We wi l l  assume that  the spot moves in a closed path in 
one cross sect ion of the e lec t rode .  The e lec t rode  could have  other con-  

figurations, such as a disk, with the spot moving over its surface in a 
c i rcular  path. 

/S-y/S 
E "[' /f ,  ' "  

i,y 

Fig. i 

ponds only on the convect ive  hea t  transfer between the e lect rode and 

the working and cooling media .  
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Fig. 2 

The specif ic  hea t  flux from the e lec t rode  region of the are in the 

smeared spot is 

q = Q / 2 x D r o .  (1.2) 

The boundary conditions of the problem are 

LOT' I OV = - - q H  (ro 2 - -  z s) + ~ztT', y = 0 

We assume that  the heat  flux from the working med ium to the e l e c -  
trode wal l  outside the spot is due ent i re ly  to convect ion,  and in the spot 
the heat  flux Q from the e lec t rode  region of the arc is added to it .  We 
consider a round spot. The speci f ic  hea t  flux q~ (per trait area of the 
spot) from the e lec t rode  region of the arc is assumed to be constant  and 

distributed uniformly over the spot area 

qo = Q l ~ r o  2 �9 ( 0 . 1 )  

Here r0 is the spot radius. The tempera ture  of the working medium 
T01, the cooling med ium T0t, the hea t  transfer coeff icients  of the 
working med ium a l  and cool ing med ium c~v the the rmal  conduct iv i t  3, 
X and the rmal  diffusivity a of the eleclzode m a t e r i a l  are assumed to be 

constant .  The electrodes are of inf ini te  length.  We consider the case of 

s teady-s ta te  hea t ing .  
1. Cy l indr ica l  e lec t rode  with spot moving  a t  h igh  speed (plane ap-  

proximation) .  If the spot moves rapidly enough over the surface of a 
cy l indr ica l  e lect rode we can assume that  the spot degenera tes  into a 

r ing of width 2r0-the "smeared" spot. The simplest  solution of the prob- 
l em  of the tempera ture  field in the e lec t rode  is found by the "p lane-  
approximat ion"  scheme,  where t h e  cy l indr ica l  e lec t rode  is imagined 
to be cut along a generatr ix  and opened up to form a p la te  of width 
~rD and thickness 6 (Fig. 1), where D is some mean  d iamete r  of the in i -  
t i a l  cy l inder .  The problem now becomes  a plane one. The hea t - con -  
duct ion equat ion ks 

O~T'/Ow ~ -~- O~T'/Oy ~ ~ 0 (T' ~ T - -  T*). (1.1) 

Here T is the tempera ture  of a given point on the plate;  T* is the 
temperature  of a point on the p la te  at  an inf in i te  dis tance from a spot 
with the same coordinate y as the g iven  point; this temperature  de -  

~.OT' / Oy = - -  eqT ' ,  y = 6; 

OT' / Or = 0, m = 0.  (1.3) 

Function H is defined in the following way: 

H(z)  = t when z ~ O ,  

H(z)=0 when z<0. (IA) 

We introduce the dimensionless  parameters  

z _~_ a8 
~=y, n= , B= T, 

~xT'L6 D ro 

Here B is the Blot number.  The hea t -conduc t ion  equat ion takes the 

form 

O2~lOg ~ + O~xlOq ~ = 0 .  ( 1 . 5 )  

The boundary conditions are 

oT H (02--  ~2) 
O~ I . . . .  2 - ~  + B1z, *1 = 0; 

O ~ I = - - B ~ ,  ~ = l ;  - - ~ - = 0 ,  ~ = 0 .  (1.~) 

The temperature  T* is g iven  by the formula 

B1 (t + B~) Tot + B~To~ - -  BrB~ (T0r - -  ToQ ~] 
T* : BI -]- B~ + BaBz (1.7) 
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The problem is solved by the Fourier method by representing the 
even function f ( z )  in the form of a Fourier in tegral  [6], 

--CO 0 

(1.8) 

so that  

t S s i n p p  H (p~ - -  ~) = -~- - - 7 -  cos ~ d p .  

- - o o  

(1.9) 

Satisfying the boundary conditions (1.6) and using the evenness of 
the integrand in the expression for r we f inal ly  obtain 

o 

p ch p (1 - -  ~) q- B~ sh p (t  - -  ~]) 
X ( p ~ + B ~ B ~ ) s h p + p ( B ~ q - B ~ ) c h p  d p .  (1.10) 

Figure 2 shows character is t ic  relat ionsh!ps between vr  (0, 0) (value  
of ur  a t  center of spot) and the Biot numbers  B1 and Bt for p = 1. I t  
should be noted that  i f  B 2 is sufficiently large  UT (0, 0) depends weakly  

Fig. 3 

on B~. When BI is la rge  ur  (0, 0 ) i s  p rac t i ca l ly  independent  of BZ and 
depends weakly on BI. 

In the cavi ty  of the cy l indr ica l  e lec t rode  of a plasmatron,  where 
aerodynamic  forces due to the moving  working med ium ac t  on the arc, 
osci l la t ions of the arc length  occur and the distribution of the specif ic  
hea t  flux from the arc spot through the zone of osci l la t ions of the arc, 

the length of which is l, can be regarded as a lmost  normal  

q = q l e x p  ( - - x  21 rl~). (1.11) 

The to ta l  hea t  flux brought to the spot is 

Q = ~ u DqxrlO (l / 2rx). (1.12) 

Here r is a probabil i ty  in tegral .  
Since this hea t  flux is equal  to the flux from an arc spot of radius 

r0 when the specif ic  hea t  flux q = q0(0.1), then 

qoro z 
ql = ] / ~  r lDO (l ] 2r~) (1.13) 

The solution of the problem of the temperature  fieM of a cy l indr ica l  
e lect rode in the plane approximat ion with normal  distribution of the 
specif ic  hea t  flux (1.11) leads to the relat ionship (for case bt2rl >>1, 
when @(/]2ri) ~ 1), 

O3 

vT (L "q) = - ~  cos p~ exp X 
0 

p e h p ( l  - -  71) q- B2sh p ( l  - -  ~1) 
X (pZ _1_ BIB2) sh p + p (B1 -}- B~) eh p dp.  (1.14) 

Here p = rffS. Calcula t ions  from (1.14) (points in Fig. 2) show that  
vr  (O, (~) in this case differs l i t t l e  from vr  (0, 0) when the specif ic  hea t  
flux is distributed uniformly over the spot area.  

2. Cyl indr ica l  e lec t rode  with spot moving  at  high speed. The re-  

sults obtained above are val id  for th in-wal led  electrodes.  If  the ra t io  
of the wal l  thickness to the e lect rode d iamete r  cannot  be regarded as 

smal l ,  the problem has to be solved by a more  accura te  method.  
We consider a cy l indr ica l  e lec t rode  (Fig. 3). The inner surface of 

the electrode,  of d iamete r  D = 2rl, receives  a hea t  flux in a smeared 

annular  spot of width 2r0. The e lec t rode  outside d iamete r  D2 = 

= 2r~. The x-ax i s  is d i rected along the e lec t rode  axis and r is the radius 
of the given point.  The wa!l  thickness 5 = r z - r i .  We introduce the 
dimensionless parameters  

x r a6 nT'L6 
~ = - 8 - '  n = - - 8 - ,  B = - Z - ,  . r=  Q 

D1 D~ ro re 
vl = "-~-, v~ = - - T - '  p = " -8 - '  R - -  rl 

As a reference dimension we take the wal l  thickness,  so that  we 
can compare the solution with the p lane-approx imat ion  solution. 

The hea t -conduct ion  equat ion and boundary conditions take the 

form 

0~v i 0 0"~ 
0~-v+ W - ~ n N  =o, 

Oz i i 
On - - - -  2 - - -~H(p~- -~2)  + B I ~ ,  n =~--~- '~  t , (2.1) 

01: R 
O~ I - -  B2z, "q= R - -  i ' 

O~ 
O~ = O, ~ = O. (2.2) 

The tempera ture  T '  is defined as in Sect ion 1, and the temperature  
T* is g iven by the formula 

B 1  

x / B - - I  

B1B~ \-1 
• + , . +  (2.3) 

Table  1 

X a b X a b X a b 

0 .  

1 
2 
3 
4 
5 
6 
7 
8 
9 

lO 
t4 
t2  
t3 
i 4  
t5 
16 

0 
0.5457 
0.7t58 
0.8240 
0.9003 
0.9562 
0.9976 
t .0280 
1.0498 
i .0645 
1.0733 
i .077 t  
t .0765 I 
1.0722 
t .0646 j 
t .0540 I 
t . 0 4 0 7 !  

2.6124 
t .9716 
t .7073 
1.5057 
t .3369 
t . t896  
t .0576 
0.9376 
0.827t 
0.7246 
0.6291 
0.5395 
0.4552 
0.3757 
O.30O5 
0.2292 
0.16t7 

t7 
t8 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

1.0251 
t.0073 
0.9975 
0.9659 
0.9427 
0.9t80 
0.8919 
0.8645 
0.8359 
0.8063 
0.7756 
0.7440 
0.7116 
0.6783 
0.6443 
0.6096 

0.09756 
0.03664 

--0-02127 
--0.07632 
--0.1287 
- -0- i784 
--0.2256 
--0.2705 
- - 0 . 3 t 3 1  
--0.3534 
- -0 .39t6  
--0.4277 
--0.4617 
--0.4938 
--0.5939 
--0.5520 

33 
34 
35 
36 
37 
38 
39 
40 
4t 
42 
43 
44 
45 
46 
47 
4B 

0.5744 
0.5385 
0.502t 
0.4652 
0.4280 
0.3903 
0.3522 
0.3t3B 
0.2752 
0.2363 
0.t972 
0.1580 
0 . i i 8 6  
0.07914] 
0-03958] 

0 

--0.5784 
--0.6029 
--0.6256 
--0.6456 
--0.6656 
--0.6830 
--0.6987 
- -0 .7 t28  
- -0 .725t  
--0.7358 
--0.7448 
--0.7521 
--0.7578 
--0.7619 
--0.7643 
--0.7651 
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The problem is solved by the Fourier method.  The expression for r 
has the form 

i i cos p~ s in  pp 

o 

A~ (p, R) I~ (prl) 4- A~.(p, R) Ko(pn) 
X - -  As (p, lrl) dp ,  

Here I0, I~, K0, and K: are Bessel functions of imag ina ry  argument .  

Putting n = 1/(R -- 1) + n', where n'  is measured from the e lec t rode  
surface heated by the arc, and le t t ing  (R -- 1) tend to zero, we can  

show that  (~.4) reduces to (1.10). 

~ X ~  -- -0.o1 

. . . . .  
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Fig. 4 

Figure 4 shows the results of ca l cu la t ion  of u i r  (0 .1 / (R -- 1)) in the 
center  of the spot for B~ = 0 and p = 1 in re la t ion  to R and B 2. For com-  

parison we give the values  of u r  (0, 0) in the p lane  approximat ion ,  The 
figure shows that  u l r  (0 .1 / (R -- 1)) is less than ur  (0, 0); in the range of 
R usually used in prac t ice  (R ~< 2) the difference does not exceed  ~ 2 0 % .  

3. Plane e lec t rode  with annular spot. If the spot moves at  high 
speed over the surface of a plane e lec t rode  (disk)- in a closed annular  

path (Fig. 5) the spot wi l l  degenera te  into a r ing 2r 0 wide, the cen t ra l  
l ine  of which is a t  a d is tance  r l  from the axis of rotat ion,  a long which 

the x -ax i s  is directed;  r is the dis tance from the g iven point to the axis 
of rotat ion.  We consider an e lec t rode  of inf in i te  ex tent .  We introduce 
the dimensionless  parameters  

z r a6 ~T')~6 
~ = T '  ~ I = T '  B = T '  P =  Q 

go r l  
p = - - ~ ' ,  R = - ~ - ,  v = 2 R .  

The tempera ture  T '  is defined in the same way as in Section 1. The 
specif ic  hea t  flux in the smeared spot is 

q = Q / 4~ rorli , (3.1) 

The hea t -conduc t ion  equat ion has the form (2.1). The boundary con-  

di t ions are 

0z t 
0~ = - -  4 - ~  H [ ~  - -  ( / t  - -  ~1)21 + B~z,  ~ = 0 ; 

OT O.t: 
04 = - -  B~T, ~ = 1; On = 0, i 1 = 0. (3.2) 

The method of solution is the same as in Sections 1 and 2. As a 

resul t  we obtain 

oo 
t 

,~ (~, n) = ~ I J~ {<n + p) :, [e <n + p>l - 
o 

- -  ( n  - -  p) J~ [p ( s  - p ) l }  x 

x pchp( i - -4 )+~ , shp( t - -~ )  
(p2 -t- BtBa) sh p ~- p (B: + B~) eh p dp. (3.3) 

Here I0 and J1 are Bessel functions of rea l  argument .  Figure 6 shows 
the results of ca lcu la t ion  of the distr ibution of ur  (0, ~) over the e l ec -  
~ode  Surface for different  va lues  of R with B1 = 0, B z = 1, and p = 0.01. 
In the case R = p the annular spot degenerates  into a stationary spot with 

A r 

Fig. 5 

radius 2r0. The temperature  m a x i m u m  in this case is exac t ly  on the 

"edge"  of the spot--on the axis of symmet ry /  With increase in R the 

m a x i m u m  moves within the spot and when R ~ 2p the m a x i m u m  t e m -  
perature does not differ great ly  from the tempera ture  on the cent ra l  

l ine  of the spot. 
4. Cyl indr ica l  e lec t rode  with spot moving  at  f ini te  speed (plane 

approximat ion) .  We have  given the solution to some problems of the 
temperature  distribution in the e lect rode in the case where the arc spot 
moves at  a "suff icient ly h igh"  speed over the e lec t rode  surface, i . e . ,  

for a "suff icient ly h igh"  frequency of passage of the spot tbxough points 
lying in its path, so that  the heat  flux through the spot can be regarded 

as spread over the whole area of the region through which the spot 
passes. I t  is of interest  to find out at  what speed of the spot we can 
m a k e  this assumption and what is the difference between the ac tua l  
temperature  of an e lect rode with a moving spot add the tempera ture  of 

an e lec t rede  with a smeared spot. We consider the plane approximat ion 
(Fig. 7). We imagine  tha t  the e lec t rode  is cut along a generarxix and 
opened out to form a plate .  I t  is convenient  to take a cut  which is 

/ 

J 

I J 
t- 

o "~j,q 

/ 
---__2_I 

f 

Fig. 6 

fixed relat iVe to the spot, i . e . ,  which traverses the curved surface of 
the cyl inder  with the same speed V as the spot. 

Taking the origin of coordinates at  the center  of the spot we find 
that  the problem reduces to de termina t ion  of the tempera ture  field in 
a pIate moving re l a t ive  to the spot with the speed of its mot ion over 
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the electrode, with boundary conditions on the surfaces of the cut, 
Iocated at a fixed distance from the center of the spot, imposing the 
condition that each two corresponding points of these surfaces are 
actually one point on the initial cylinder. It is convenient to have the 
planes of the cut at equal distances from the center of the spot. The 
plate moves relative to the spot along the x-axis in a negative direc- 

/ /  
L," / ', V I ~  

Fig. 7 

tion. The specific heat flux in the arc spot is given by Eq. (0.1). The 
heat-conduction equation in the given case is the energy equation for 
a moving incompressible medium 

O~T" V OT" O~T" O~T" 
Oz ~ +-~----S~--+~+--~z z -~-0. ( 4 . 1 )  

The temperatureT' is defined in the same way as in Section 1. We 
introduce the dimensionless parameters 

x y z ~ 8  
~ = ' ~ - '  n = T  ' ; = T ,  B = - - g - ,  

rtT'X8 ro D V8 
�9 r =  Q , p = ~ - ,  v = - - ~ ,  1 ~ = ~  �9 

The heat-c0nduction equation (4.1) takes the form 

O~lO~' + ~,~la~ + O~l~q ~ + o%/o~, = 0 .  (4 .2)  

The boundary conditions on the surfaces y = 0, y = 6, and on the 
plane of symmetry z = 0 are written in the following way: 

~-~-------~-H (p'- ~'- ;~)+ B,% n--~-- 0; 

0~ 0~ 
an----B'x '  ~1=t; --~-=0, ~=0. (4.3) 

The boundary conditipns on the surfaces of the cut--the "periodicity 
conditions" - a r e  

0-~ = - ~  (~ (4.4) 

The problem is solved by the Fourier method. We use the expansion 

1 c~ 2n~i ~ cosp~ 
-- ~ v  2 e x p ~  a P X 

i 2ati X exp 7 sin.p ]/-?~ - -  t~ dt dp , (4.5) 

and the equality [7] 

i 2nt s inp  ~ c o s ~ d t =  
o 

~pp . , . . . .  

2 V p ~ / d 7 / ~  [p Y P  + (2 , ,m~ l  �9 0 . 6 )  

As a result we find 

~(~ ,  % ' D = ~ % o ( q ,  ~ )+~(~ ,  n, D,  (4.7), 

co  2 lcosp ,+> 
�9 , , '% (% ;) = ~ -  - x 

g 

p ch p (t - -  ~1) + B~shp (1 --~1) 
X (pZ-~- BxBz) sh p + p (B~ + B~) ch p dp ,  (4.8) 

n = l  0 

2n~ 
x {[r (rt) 0~ + r (rt) 0~1 cos -=f- + 

2n5 
+ [(P~ 01) 0~ --  (~ 01) 0d sin -b--} d p ,  (4.9) 

q % 0 9 = u c h u ( t - - ~ l )  e o s v ( t - - ~ l ) - -  

- - v s h u ( t - - ~ l )  s i n v ( t - - r l ) +  

+ B2 sh u (t - -  ~1) cos v(l  --  ~1), 

% 6q) = v ch u (t --  ~1) cos v (t - -  "q) + 

+ u  s h  u ( t  - -  ~1) sin v ( t  - -  ~ 1 ) +  

+ B2 ell u (1 --  11) sin v (t - -  ~1), (4.1o) 

0~ = (u 2 - v ~ + B1B~) sh u cos v - -  2 uv ch u sin v +  

+ ( B , + B s ) •  eh u cos v - - v s h u s i n v ) ,  

0~ = (u 2 -  v 2 + B1B~) ch u sin v -}- 2 uv sh u eos v + 

+ (B1 + B2) (u sh u sin ~ + g ch u cos v), (4.11) 

~u = ~h l/F {{[p~ + (2n I ~)~l ~ + 

+ ~ (2n / v)~f/~ + ps + (2~ t ,~)2}'/,, 

v = 1 h t /Y {{[p~ "4- (2n / ~)~1' + 

+ ~2 (2n ] ,~)z}'l, __ p~ __ (2n ] v2)~} '/'. (4 .I 2) 

Function ~(~, ~, ~) when 8--~tends to zero, i.e., when the spot 
moves at high speed the electrode temperature is determined by the 
first term in (4.7). The difference from the corresponding expression 
in Section 1 consists in replacement of sin pp by 2Jl(pp), which is due 
to variation of the specific heat flux over the width of the strip into 
which the round spot degenerates with constant distribution of the spe- 
cific heat flux. 

In this case 

q (z) : 4 r  "a qo ~ (z/ro)' . (4.13) 

The value of q~ is given by Eq. 60.1). Calculations show that the 
value of ur~(O,  0) differs little from yz (0, 0) in Section 1. 

At large values of i3(even at moderate speeds of the spot the pa- 
rameter /3 is fairly large) the expression for r becomes much simpler. 
It can be shown that on the surface 7/= 0 in this case 

r 0, D ~r (~, 0, D = 

2 V - 4  ,~r176 i t 2 , 4  . 2 ~ \  = ~,~ r ~ - ~  ~cos ~ -  - ~n ~ - )  x 
n = l  

~ cosp~J1 [P V P  ~ q- (2n/'~i$| dp 

X u pZ + (2n / ";)~ 
o 

(4.14) 

Here the integral is equal to zero outside the strip [~[ <- p. 
Hence, at large 8 the difference between the temperature of the 

electrode with a moving spot and the temperature produced by a 
smeared spot is concentrated mainly in the region through which the 
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spot passes. Substituting the value of the integral, we find that in the 
strip 

r (L o, ~)= 

+ a  ,'T- ( ~ + U ;  

a(x, s ) =  2 s innz  . - - ~ - ,  b (x, s) = E cos n x  (4.15) 

Table i gives values of a = a(x, s/~, b = b(x, s/~) for values of 

X = 48 x/Tr, i.e., for values ofx which are multiples of ~r/48 in the 

range 0 <- x -< ~r (functions a(x, s) and b(x, s) are periodic with a period 
of 2~). 

We note that 0~(~, 0, g) is independent of the rate of cooling and 

supply of heat by the working medium. Thus, a reduction in the elec- 

trode temperature in excess of that due to the smeared spot can be ef- 
fected only by an increase in the speed of the spot. Equation (4.15) 
takes a simpler form at large values of u, when the sum can be re-  
placed by the integral (g in this case must be >> v, since otherwise 
(4.14) would not hold). Having in mind that the values of 2nv for suc- 
cessive values of n differ from one another by an increment 2/v, which 
is small  at large v, we can denote the quantity 2n/v as a variable of 
integration. Then (4.15) can be written in the approximate form 

r (L o, ~).~r (L 0, ~)= 

VS, ~o~t~-si.t~ ~int ~ e t  (4.10 
~p~ ' ~  t~l~ 

o 

The integral in-(4.16) is zero in the region in front of the spot, 
i. e . ,  at large values of g and v the excess temperature is concentrated 
only in the spot and its track. It can be shown that within the spot 

2v 
,~*(~, 0, ; ) =  ~ P~ ~ ( ~ - - D  '/', (4.17) 

and in the track (g < -[pZ -- g~]~rz) 

2v 
*~*(~, 0, ; ) =  VWp~ ~ [ ( ~  - -  ~) ' / ' - -  

--(-- ~-- ~ ) ' I ' 1  �9 (4.18) 

The maximum value of Ct* occurs precisely on the rear edge of the 
spot on the axis of motion ~ = - p ,  g = 0 and is 

~* - -  , (4.19) 

i. e . ,  the maximum temperature increment in the moving spot is 

The form of function r 0, g) is shown in Fig. 8. 
We find the values of v for which the approximate relationships 

(4.17) and (4.18) can be used. Strictly speaking, f~(g, 0, g) = Cx*~(g, 0, g) 
only when v is infinitely large. If v is finite, then in front of the spot 

~ 0 . We assume that the value of 0 in front of the spot can be neg- 
lected if it comprises s of the max imum value of r Then the absolute 
value of g, where on the axis of motion ~ ~* is equal to ~ of r xmax*, will 
be approximately equal to the min imum value of (~rv -- p) at which 
(4.17) and (4.18) can be regarded as valid. 

This value Vmi n is 

Vmin t (t +8~)~ l 
p - -  2;z as ~ 2~a~ �9 (4.20) 

For an approximate estimate of the value of ~ at which @ can be 
evaluated by means of ~ ,  we consider the second term r of the ex- 

, ~=0 K * 
o 

1.0 , t O  

,! I 
-3 -g -I o �9 

Fig. 

pansion of 0 in terms of the small parameter 1/(  5~ i n ,  and we find the 
values of 8 at which it can be neglected. We obtain 

r BF# ~ I 2n~ . [2n  p~ff-~__~) (4.21) r (~, 0, ~) = ~ Z3 -2"F sin - -  sin - -  

in front of the spot ( p~I/"p~-- ~ < ~) 

~ ( ~ ,  o, ;)=p-d~-~ 

inside the spot ([ ~ I ~ p~V"p~--~D 

(4.22) 

~.~(~, o, ~)= p-)-~-~ ~ ~ i - ~ 4  ~ 

in the track : ( ~ < -  Vp~--~z) 

@.23) 

B I ~ (  l 2~ 
~ ( ~ ,  0, ~ ) = - - p - ~  q -~ -~ ) .  (4.24) 

The greatest value of r occurs on the front edge of the spot and is 

BI~ ( l  2p \ (4.25) 

Hence, r will be much less than ~1 if (in view of (4.19) and as- 
suming (2p/rw) << 1) 

~ I/s~ p BI ~ . (4.26~ 

It is clear that ~2, like ~1, is independent of thecool ingra te .  If the 
convective heat flux to the electrode surface in contact with the work- 
ing medium is small, i . e . ,  Bx ~ 0, then to determine the lower l imit  
of the values of ~ at which ~ can be evaluated by means of 01, we 
must investigate the third term ~bz of the expansion of 0 in terms of the 
parameter 1/(B) l/z, which depend? on Bz. Assuming B 1 = 0, we can eva- 
luate 03 from the expression (for large v) 

5.2 B~ ~"I~ (4.27) *~ < - K -  p~'/, 

Hence, it follows that 01 will be much less than Ca if 

>> (2.6 / V-~)  e~.' . 1 / ~ .  (4.28) 

The value of ~ on the electrode surface in contact with the cooling 
medium for large g can be put in the form 

r t; ;) . .~r 1, U =  

8 ~ ~cosp~Jl{p[p ~ q- (2n/v)~]}e-U 

t -  ---r - ~, + - ? - ) j  @ .  (4.29) 
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The value of r g,1, g) ts independent of B1 and B 2, i . e . ,  the 
major part Of the temperature in excess of that produced by a smeared 
spot can bereduced only by increasing the speed of the spot. The es- 
t imate (4.28) shows that 

q 

In view of the exponential relationship between ~1 and --(~/v) In  
this value is usually small  in comparison with vr~(~, 1, ~). 
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