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CALCULATION OF TEMPERATURE FIELD IN PLASMATRON ELECTRONS

B. A. Uryukov
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The problems of calculation of temperature fields inthe electrodes of
a plasmatron {electric-arc heater) differ from the usual heat-conduc-
tion problems in that in a plasmatron there is not only convective heat
transfer between the elecwrode wall and the working medium and be-
tween the wall and the cooling medium, but also an intense delivery of
heat to the electrode in a sharply delimited region of the electrode
surface—the arc anchor spot.

In [1] the source-and-sink method was used to consider several sim-
ilar problems in application to the heat calculation of electrodes for
welding. In [2~-5] the temperature fields from a round stationary source
on the surface of a semi-infinite cooled plate and from the spot of an
arc moving at high speed between two coaxial cylinders (electrodes)
were investigated.

We consider a plasmatron electrode in the form of a hollow cylin-
der, one surface of which is raversed by the arc spot and the other sur-
face is cooled. We will assume that the spot moves in a closed path in
one cross section of the electrode. The electrode could have other con-
figurations, such as a disk, with the spot moving over its surface in a
circular path.

Fig. 1

. We assume that the heat flux from the working medium to the elec-
trode wall outside the spot is due entirely to convection, and in the spot
the heat flux Q from the electrode region of the arc is added to it. We
consider a round spot. The specific heat flux qq (per unit area of the
spot) from the electode region of the arc is assumed to be constant and
dismibuted uniformly over the spot area

g = Q[ wtre?. 0.1)

Here 1y is the spot radius. The temperature of the working medium
T the cooling medium Tgy, the heat transfer coefficients of the
working medium ¢ and cooling medium oy, the thermal conductivity
X and thermal diffusivity a of the electrode material are assumed to be
constant. The electrodes are of infinite length. We consider the case of
steady -state heating.

1. Cylindrical electrode with spot moving at high speed (plane ap-
proximation). If the spot moves rapidly enough over the surface of a
cylindrical electrode we can assume that the spot degenerates into a
ring of width 2r¢—the "smeared” spot. The simplest solution of the prob-
lem of the temperature field in the electrode is found by the "plane-
approximation” scheme, where the cylindrical electrode is imagined
to be cut along a generatrix and opened up to form a plate of width
mD and thickness § (Fig. 1), where D is some mean diameter of the ini-
tial cylinder, The problem now becomes a plane one. The heat-con-
duction equation is

BT822 + PT I8y = 0 (T" = T — T*). (1.1)

Here T is the temperature of a given point on the plate; T*is the
temperature of a point on the plate at an infinite distance from a spot
with the same coordinate y as the given point; this temperature de-

pends only on the convective heat transfer between the electrode and
the working and cooling media.
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Fig. 2

The specific heat flux from the electrode region of the arc in the
smeared spot is

g = Q/2nDr, . 1.2)
The boundary conditions of the problem are
MT' [ oy = —qH (n* — o) + o, y=0;
AT [ By = —a, 7, y=0;
o' [ 3z =0, ==0. (1.3)
Function H is defined in the following way:
H(z)=1 whenz;_(],
H(z)=0 when z<{0. (1.4)
We inttoduce the dimensionless parameters
z oy g 98
E=-5, 1=7%. B=7",
__nT’LG D T
= 0 * Y55 PTT

Here B is the Biot number. The heat-conduction equation takes the
form

PT/EE + Pl =0. (1.5)

The boundary conditions are

Al H (p2 —E)
= Sov ~+ Brr, n=0;
T at
—a—n-=~—Bz'l‘, n=1; E:O, E=0. (1.6)
The temperature T* is given by the formula
__ Bi(1 4 Bs) Tor + BeToa — B1Ba (Tor — T'o2) 1 @mn

™ B1+ Ba+ B\B:
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The problem is solved by the Fourier method by representing the The solution of the problem of the temperature field of a cylindrieal
even function f(z) in the form of a Fourier integral [6], electrode in the plane approximation with normal distribution of the
specific heat flux (1.11) leads to the relationship (for case I/2ry >1,

L ® o when &(1/2r;) ® 1),
to=- § [{10cospar]eospsap, @8 - 2
— 1 — pp
00 0 — —
ve (&, =\ cos pE exp (2 x
so that 0
pehp(l—n)+ Beshp(1—n)
N dp. 14
1 Oc’sinpp X (p*+ BiB)shp1p (Bi+ Boyehp P (-14)
HE—g = | B2 cospedp- @.9)
e Here p =1,/8. Calculations from (1.14) (points in Fig. 2) show that
Satisfying the boundary conditions (1.6) and using the evenness of vr (0.’ Og.m Fé‘is case .ci.ifferls lietle f;()m vr (0, 0) when the specific heat
the integrand in the expression for r we finally obrain flux is 1st1:1 ufed unsormy ov.er the spot area.
2. Cylindrical electrode with spot moving at high speed. The re-
o . sults obtained above are valid for thin-walled electrodes. If the ratio
VIE, q) = A S cospEsinpp of the wall thickness to the electrode diameter cannot be regarded as
P e p small, the problem has to be solved by a more accurate method.
We consider a cylindrical electrode (Fig. 3). The inner surface of
pchp(—n)+ Bashp( — ) dp. (1.10) the electrode, of diameter D = 9r;, receives a heat flux in a smeared
(P*+ BiBe)sh p + p(B1+- By)ch p

annular spot of width 2rg. The electrode outside diameter Dy =

= 2ry. The x-axis is directed along the electrode axis and r is the radius
of the given point. The wall thickness § = 15 — r;. We introduce the
dimensionless parameters

Figure 2 shows characteristic relationships between vt (0, 0) (value
of vt at center of spot) and the Biot numbers B; and B, for p= 1, It
should be noted that if By is sufficiently large vr (0, 0) depends weakly

z r ab aI"AS
== B=T=Tg
Dy LDe T p_ T
vl:T’W:é’p_b' =7 "
z
As a reference dimension we take the wall thickness, so that we
can compare the solution with the plane-approximation solution,
The heat-conduction equation and boundary conditions take the
Fig. 3 form
on By, When B, is large vt (0, 0) is practically independent of By and 6%t n 4 9 ot 0
depends weakly on B;. dgr T q oaman T
In the cavity of the cylindrical electrode of a plasmairon, where o 1 . ny 1 1
aerodynamic forces due to the moving working medium act on the arc, e e A B BT n=pTqe ()
oscillations of the arc length occur and the distribution of the specific .
heat flux from the arc spot through the zone of oscillations of the are, ot Bt ___R
the length of which is 7, can be regarded as almost normal an o MR-
ar
g=giexp (— a2/ r?. (1.11) . =0 =0 22
The total heat flux brought to the spot is The temperature T* is defined as in Section 1, and the temperature
— T*is given by the formula
Q=n Va Dar® (i 2ry). (1.12)
. . By BB,
Here &(z)is a probability integral. T* = [-—E Tu+ Blop —g—7 X
Since this heat flux is equal to the flux from an arc spot of radius =
ro when the specific heat flux q = qo(0.1), then X (Tmln n _E_J — Tolnn(R— 1”] X
- qoro® ’ By BB ~1
N= e 5 (1.13) X (2 + Bt Fegln R) . (2.3)
Table 1
X a b X a b X a b
0. 0 2.6424 17 1.0251 0.09756 33 0.5744 | —0.5784
1 0.5457 | 1.9716 18 1.0073 0.03664 34 0.5385 | —0.6029
2 | 0.7158 | 1.7073 19 0.9975 | —0-02127 35 0.5021 | —0.6256
3 0.8240 | 1.5057 20 0.9659 | —0.07632 36 0.4652 | —0.6456
4 | 0.9003 | 1.3369 21 0.9427 | —0-1287 37 0.4280 | —0.6656
5 | 0.9582 | 1.1896 22 0.9180 | —0-1784 38 0.3903 | —0.6830
6 | 0.9976 | 1.0576 23 0.8919 | —0.2256 39 0.3522 | —0.6987
7 1.0280 | 0.9376 24 0.8645 |-—0.27056 40 0.3138 | —0.7128
8 | 1.0498 | 0.8271 25 0.8359 | —0.3131 41 0.2752 | —0.7251
9 1.0645 | 0.7246 26 0.8063 | —0.3534 42 0.2363 | -—0.7358
10 1.0733 | 0.6294 27 0.7756 | —0.3916 43 0.1972 | —0.7448
14 1.0774 | 0.5395 28 0.7440 | —0.4277 44 0.1580 | —0.7521
12 1.0765 | 0.4552 29 0.7116 | —0.4617 45 0.1186 | —0.7578
13 1.0722 | 0.3757 30 0.6783 | —0.4938 45 0.07914 —0.7619
14 1.0846 | 0.3005 31 0.6443 [ —0.5939 47 0-03958] —0.7643
15 1.0540 | 0.2292 32 0.6096 |--0.5520 48 0 —0.7651
16 1.0407 | 0.1617
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The problem is solved by the Fourier method. The expression for T
has the form

cos pE sin pp

Vit (g, ) ="~ I S P

A1 (p, B)I(pn) + A= (p, R) Ko(pn)
X
A3 (pv R)

-R—f—1>~BzKo(§’-’%)’
" >+B210 ("“’H‘f).
1)’1 (JTPRT> -

wor) & (75

+ P Iy (721) = (7r) +
+ 5 (g 2) (25 ]+

confnt) )
A7)+

o (7#5) -

= (i) w2 - 24

ax(p, By=pKs (5
Ax(p, R)~plx<
As(p, R)=p* [Kl(

—1

+K‘< 1>’°
P

(7=
+ BlBgl:Ko (71 ) to

Here Ip, 13, Ko, and K;j are Bessel functions of imaginary argument.
Putting 7= 1/(R — 1) + n°, where 1’ is measured from the elecmode
surface heated by the arc, and letting (R — 1) tend to zero, we can
show that (2.4) reduces to (1.10).
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Fig. 4

Figure 4 shows the results of calculation of vyr (0, 1/(R — 1)) in the
center of the spot for By= 0 and p=1 in relation to R and By. For com-
parison we give the values of v (0, 0) in the plane approximation, The
figure shows that vyt (0.1/(R — 1)) is less than v (0, 0); in the range of
R usually used in practice (R £

3. Plane electrode with annular spot. If the spot moves at high
speed over the surface of a plane electrode (disk}in a closed annular
path (Fig. 5) the spot will degenerate into a ring 2, wide, the central
line of which is at a distance r; from the axis of rotation, along which
the x-axis is directed; r is the distance from the given point to the axis
of rotation., We consider an electrode of infinite extent. We inwoduce
the dimensionless parameters

kd r ad nT'Ad

E:T, ’n——_«——§—~' =7 r:———Q R

o

To "
P="5 > R=-5, v=2R .

The temperature T' is defined in the same way as in Section 1. The
specific heat flux in the smeared spot is

g= Q/4n o1, (3.1)

2) the difference does not exceed ~20%.

The heat-conduction equation has the form (2.1). The boundary con-
ditions are

at

E—"4pRH[P2 (R—npl+ B, E=0;

S : s

7’%:—3”’ i=t =0 1=0. @2

The method of solution is the same as in Sections 1 and 2, As a
result we obtain

L

Vi, = YJolom {(B+0) Tilp (R0l —

o8

—(R—p) Ialp (R—e)I} X

pchp(i —E) 4 Byshp (1 —¥§) 4 os
(7*+BiBuyshp +p (B: + Bayohp (3.3)

Here Jo and Jy are Bessel functions of real argument. Figure 6 shows
the results of calculation of the distribution of vt (0, 1) over the elec-
wode surface for different values of R with Bi= 0, By =1, and p= 0.01.
1n the case R = p the annular spot degenerates into a statrionary spot with

radius 2rg. The temperature maximum in this case is exactly on the
“edge™ of the spot—on the axis of symmetry. With increase in R the
maximum moves within the spot and when R > 2p the maximum tem-
perature does not differ greatly from the temperature on the central
line of the spot.

4. Cylindrical electrode with spot moving at finite speed (plane
approximation), We have given the solution to some problems of the
temperature distribution in the electrode in the case where the arc spot
moves at a "sufficiently high" speed over the electrode surface, i.e.,
for a "sufficiently high” frequency of passage of the spot through points
lying in its path, so that the heat flux through the spot can be regarded
as spread over the whole area of the region through which the spot
passes. It is of interest to find out at what speed of the spot we can
make this assumption and what is the difference between the actual
temperature of an electrode with a moving spot and the temperature of
an elecrode with a smeared spot. We consider the plane approximation
(Fig. 7). We imagine that the electrode is cut along a generatrix and
opened out to form a plate, It is convenient to take a cut which is

v g
! . 5 5
I
Ld ﬁ

Fig. 6

fixed relative to the spot, i.e., which traverses the curved surface of
the cylinder with the same speed V as the spot.

Taking the origin of coordinates at the center of the spot we find
that the problem reduces to determination of the temperature field in
a plate moving relative to the spot with the speed of its motion over
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the electrode, with boundary conditions on the surfaces of the cut,
located at a fixed distance from the center of the spot, imposing the
condition that each two corresponding points of these surfaces are
actually one point on the initial cylinder. It is convenient to have the
planes of the cut at equal distances from the center of the spot. The
Plate moves relative to the spot along the x-axis in a negative direc-~

—/

: Vi
zy }y

Fig. 1

tion. The specific heat flux in the arc spot is given by Eq, (0.1). The
heat-conduction equation in the given case is the energy equation for
a moving incompressible medium

T’ vV a1 2T 927"
Tt T e T T =0 1)

The temperature T* is defined in the same way as in Section 1. We
introduce the dimensionless parameters

y z ad
E=75, 1=%. =73, B=-j".

o D L
y Py, V=R, B=r.

The heat-conduction equation (4.1) takes the form

3 /082 + BAT/AE + Ft/on? + v/t =0, (4.2)

The boundary conditions on the surfaces y = 0, y = §, and on the
plane of symmetry z = 0 are written in the following way:

ot 1
T = g HE ==+ B, n=0

ot

B =1; ﬂ~—O =0 4.3
= 2T, N=1; ag—yg—' (4.3)

a3

The boundary conditions on the surfaces of the cut—the "periodicity
conditions" —are

av v av 3%
Fle=-F)=5l=T) e
The problem is solved by the Fourier method, We use the expansion
HE—g—-0=Hp—DH(V—8—It)) =

o) o
1 2nki cos pg
=wv 2 Py YTy X
—t0

14

N==—rt0
e
2nti
X exp ——sinp ¥V pr—i2didp, (4.5)
—r

and the equality [7]

I

2nt
Ssinp V o2 —t2cos — &=

8

_— PP VI E @
- 9 mejl [P p2 + (2n/v) ] . (4'6)

As a result we find

VE(E, N D)= v, (n, B9 E 1.0, .7

o
2 {eos pE7: (o)
Vi (1 D=y |t
[}

pchp(i —m)+ Byshp(1—n)
(p?4- BiBz)shp 4~ p (B1 + Bajchp

X dp, (4.8)

OSO cos ptJi [p VPRI @n /)] %

4 (=]
¥ (E ;>=ﬂ—pn§1 Vo T e B o

0

2nE
X {[CP1 () 01+ @2 (1) 2] cos —= +-

2
+ [92 (M) 01 — @1 () 82] sin _%é} dp, (4.9)

M) =uchu(d—1)cosv{l—n) —
—vshu(t —m)sinv (1 —n) +
+ Byshu (1 —n) cos v (4 — 1),

g (m)=vechu{(f —m)cosv(1—n)+

+ushu{l —n)sinv (1 —n)+

4+ Bychu{(l —n)sinv({—mn, (4.10)

0, = (u* — 12 + BiBy)shucos v — 2 uv c¢h u sin v +

4 (By + By) X (v ¢h u cos v — vsh usin v),

6, = (u® — 12 4+ B,B,) ch usin v 4+ 2 uv sh u cos v +
+ (By < By) (ush usin v - v ¢h u cos ), (4.11)
u=15V2 {lp*+ @n/v7E+
+B22n /vt 4 p2 4 (2n [ vy,
v =1 V2 {{[p*+ 20/ VP +
+82(2n /vt — p2— (2n [ v, “.12)

Function ¥(£, 1, £) when B~ tends to zero, i.e., when the spot
moves at high speed the electrode temperature is determined by the
first term in (4.7). The difference from the corresponding expression
in Section 1 consists in replacement of sin pp by 2J(pp), which is due
to variation of the specific heat flux over the width of the strip into
which the round spot degenerates with constant distribution of the spe-
cific hear flux.

In this case

g(z)=4a1q0 V1 —(3/ro)? . (4.13)

The value of qq is given by Eq. ¢0.1). Calculations show that the
value of vt (0, 0) diffexs little from v (0, 0) in Section 1.

At large values of B(even at moderate speeds of the spot the pa~
rameter Bis fairly large) the expression for ¢ becomes much simpler.
1t can be shown that on the surface n= 0 in this case

P& 0, H=h(E 0, =

2 Vv
“wVE2 Ve

n=1

x°§ cosptlile VP + @n/vPldp ¢.14)
PE A (2n/v)E ’

0

Here the integral is equal to zero outside the strip |§| = p.

Hence, at large Bthe difference between the temperature of the
electrode with a moving spot and the temperature produced by a
smeared spot is concentrated mainly in the region through which the
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spot passes. Substituting the value of the integral, we find that in the
strip

P& 0, )=

(o] B
a(x, s) 2 sin e bz, §)= E cos nx (4.15)
n=1 n=1 ns

Table 1 gives values of a = a(x,3/2), b= bx, 3/2) for values of
X =48 x/m, i.e., for values of x which are multiples of 7/48 in the
range 0 = x = r (functions afx,s) and b(x, s) are periodic with a period
of 2m).

We note that 9§, 0, £) is independent of the rate of cooling and
supply of heat by the working medium. Thus, a reduction in the elec-
trode temperature in excess of that due to the smeared spot can be ef-
fected only by an increase in the speed of the spot. Equation (4.15)
takes a simpler form at large values of v, when the sum can be re-
placed by the integral (8 in this case must be > v, since otherwise
(4.14) would not hold), Having in mind that the values of 2nv for suc-
cessive values of n differ from one another by an increment 2/v, which
is small at large v, we can denote the quantity 2n/v as a variable of
integration. Then (4.15) can be written in the approximate form

NE 0, D=w*E 0, D=
_ ﬁv °§ ¢os 1§, — sin g

p sint 2 f2di .
VR ) P

(4-16)

The integral in-(4.16) is zero in the region in front of the spot,
i.e., at large values of Band v the excess temperature is concentrated
only in the spot and its track. It can be shown that within the spot

2v

t(E, 0, §)m e (V2 — 2 — E), 4.17

Pi* (€. 0, §) Ve VE (Vo2 —t—¥) (4.17)
and in the track (£ < —[p% = §z_|ln)

2v
*(E, 0, )=~ [(VpP— O — e
Pi* €, 0, §) Ve Ve [(Vp2—C £)
—(—E— VoE—0)F]. (4.18)

The maximum value of Y3* occurs precisely on the rear edge of the

spot on the axis of motion £ = —~p, {= 0 and is
2 Vv
=, ua 4,19
bimax = 37 o VB (4.19)

i,e., the maximum temperature increment in the moving spot is

w2 w0V

The form of function $1* (&, 0, £) is shown in Fig. 8.

We find the values of v for which the approximate relationships
(4.17) and (4.18) can be used, Strictly speaking, ¥i(£,0,&) = ¢1*/(§, 0,2)
only when v is infinitely large. If v is finite, then in front of the spot
P # 0 . We assume that the value of ¢ in front of the spot can be neg-
lected if it comprises & of the maximum value of ¢, Then the absolute
valueof £, where onthe axis of motion ¢* is equalto & of ¥ ymax", will
be approximately equal to the minimum value of (mv — p) at which
(4.17) and (4.18) can be regarded as valid.

This value v,

min 13

4.20)

For an approximate estimate of the value of 8at which ¢ can be
evaluated by means of §;, we consider the second term ¢, of the ex-

\
%/

25 a5

V\

-4
'Y

hf = pe
Fig. 8

pansion of ¢ in terms of the small parameter 1/( B)1 72 and we find the
values of Bat which it can be neglected. We obtain

Byv?
Y (€, 0, D)= —*sm
mp?B 21

sm(zn V—p_z————?), (4.21)

in front of the spot (V p2 — & <€)

B 2
(8 0, C):pT‘g Ve—2 (1 —TEV); (4.22)
inside the spot (|| Vp2—10?)
B, 2
w0 =g (1 Ve ) a9
in the rack (< — Vp2—1?)
Bwv |
28, 0, H=— lv VeE—r (1 +RT> (4.24)
The greatest value of ¥, occurs on the front edge of the spot and is
Byv 2p\
Py max = —5:3,— <1—Rvi/ (4.25)

Hence, P, will be much less than ¥ if (in view of (4.19) and as-
suming (2p/mv) < 1)

B> sp By® . (4.26)

It is clear that ¢y, like ¢, isindependentof the coolingrate. if the
convective heat flux to the electrode surface in contact with the work-
ing medium is small, i,e., By ® 0, then to determine the lower limit
of the values of Bat which 11) can be evaludted by means of $1, we
must investigate the third term Y3 of the expansion of ¢ in terms of the
parameter 1/(B)1/2, which depends on Bj. Assuming B; = 0, we can eva-
luate 33 from the expression (for large v)

5.2 Ba2w'z 4.97
W< g (.27
Hence, it follows that 33 will be much less than g if
B> (26 / V2r) B2 Ve (4.28)

The value of ¥ on the electrode surface in contact with the cooling
medium for large Bcan be put in the form

VE L D=E L, =

-8 i S°°S PL1 {plp? + (2n/v)2]} eu
% & NV @ /P (e o)

X [u [ (v+ E:,E’-) —vsin <v —|—~2—:E-)J dp. (4.29)
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The value of $#1( £,1, &) is independent of B; and By, i.e., the
major part of the temperature in excess of that produced by a smeared
spot can be reduced only by increasing the speed of the spot. The es-
timate (4.28) shows that

2V 5 oy oy - 8 ‘/g}
Wt D<Hi=—t = () e |— (%)} @a0
1n view of the exponential relationship between ¢ and —( B/u)l’z
this value is usually small in comparison with vre(£, 1, £).
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